
Programming and Proving
with Distributed Protocols

{P} c {Q}`
James R. Wilcox Zach TatlockIlya Sergey

http://distributedcomponents.net

Disel: Distributed Separation Logic

Distributed Systems

Distributed Infrastructure

Distributed Applications

Verified Distributed Systems

Verified Distributed Infrastructure

-Cert

Veri-

Iron

Wow

Verified Distributed Applications

-Cert

Veri-

Iron

Wow

Verified Distributed Applications

-Cert

Veri-

Iron

Wow
Challenging to verify apps in terms of infra.
 starting from scratch is unacceptable

Indicates deeper problems with composition
 one node’s client is another’s server!

Verified Distributed Applications

-Cert

Veri-

Iron

Wow
Client reasoning

Invariants

Separation

Challenges

Protocols

 rule

 rule/Hooks

Solutions

WithInv

Frame

`{P} c {Q}Disel:

Outline

Protocols and running example

Logical mechanisms
programming with protocols
invariants
framing and hooks

`{P} c {Q}

Implementation and future work

Cloud Compute

SC

21

Cloud Compute

Cloud Compute
while true:
 (from, n) <- recv Req
 send Resp(n, factors(n)) to from

: Server

Traditional specification:
 messages from server have correct factors

Proved by finding an invariant of the system

Cloud Compute: Server

Cloud Compute: Client

Cloud Compute: Client
send Req(21) to server
(_, ans) <- recv Resp
assert ans == {3, 7}

Start over with clients in system?

In Disel: use protocol to describe client interface

Protocols

Protocols

A protocol is an interface among nodes

Enables compositional verification

Cloud Compute Protocol

State:

Transitions:

Messages:

Sends: precondition and effect
Receives: effect

Cloud Compute Protocol

Req

State:

Transitions:

outstanding: Set<Msg>

Messages: Req(n) | Resp(n,s)

Sends:
Receives:

Resp

Req Resp

Cloud Compute

SC

Req(21)

Effect: none

Send Req(n)
Precondition: none

Cloud Compute

SC

Req(21)

Effect:

Receive Req(n)
add (from, n) to out

{ }(C,21)

Cloud Compute

SC

Resp({3,7})

Effect: removes (n,to) from out

Send Resp(n,l)

Requires: l == factors(n)

(n,to) in out

{ }

Cloud Compute

SC

Resp({3,7})

Recv Resp(n,l)

Effect: none

{ }

Cloud Compute Protocol

Req

State:

Transitions:

outstanding: Set<Msg>

Messages: Req(n) | Resp(n,s)

Sends:
Receives:

Resp

Req Resp

Outline

Protocols and running example

Logical mechanisms
programming with protocols
invariants
framing and hooks

`{P} c {Q}

Implementation and future work

Cloud Compute
while true:
 (from, n) <- recv Req
 send Resp(n, factors(n)) to from

: Server

Precondition on send requires correct factors

Cloud Compute: Server

Precondition on send requires correct factors

` send m to ht

t 2

{ }tsent ()m h,send m to h{Pre }t

while true:
 (from, n) <- recv Req
 send Resp(n, factors(n)) to from

Cloud Compute: Client
send Req(21) to server
(_, ans) <- recv Resp
assert ans == {3, 7}

recv doesn’t ensure correct factors

Cloud Compute: Client
t 2

` recv t{>} m {recvd()}m

send Req(21) to server
(_, ans) <- recv Resp
assert ans == {3, 7}

recv doesn’t ensure correct factors

Protocol Invariants

`{P} c {Q}

`{P ^ I} c {Q ^ I}0

I inductive

Protocol where every state satisfies I

Cloud Compute: Client
t 2

Now recv ensures correct factors

` recv t{>} m {recvd()}m
0

send Req(21) to server
(_, ans) <- recv Resp
assert ans == {3, 7}

Cloud Compute: More Clients
send Req(21) to server1
send Req(35) to server2
(_, ans1) <- recv Resp
(_, ans2) <- recv Resp
assert ans1 ans2 == {3, 5, 7}[

Same protocol enables verification

Frame rule

`{P} c {Q} R stable

` {P R} c {Q R}⇤ ⇤

Reuse invariants from component protocols

independent protocols

`{P} c {Q} R stable

` {P R} c {Q R}⇤ ⇤

Frame rule: Hooks

Allows one protocol to restrict another

Outline

Protocols and running example

Logical mechanisms
programming with protocols
invariants
framing and hooks

`{P} c {Q}

Implementation and future work

Implementation

Executable via extraction to OCaml

Shallowly embedded in Coq
with full power of functional programming

via trusted shim to implement semantics

Case study: two-phase commit
exercises all features of the logic

Related and Future Work

Adding other effects
e.g. mutable heap, threads, failure…

Concurrent separation logics
Iris, FCSL, CAP, …

Composition: A way
to make proofs harder

“In 1997, the unfortunate reality is that engineers
rarely specify and reason formally about the
systems they build. It seems unlikely that
reasoning about the composition of open-system
specifications will be a practical concern within
the next 15 years.”

Verified Distributed Applications

-Cert

Veri-

Iron

Wow
Client reasoning

Invariants

Separation

Challenges

Protocols

 rule

 rule/Hooks

Solutions

WithInv

Frame

`{P} c {Q}Disel:

